

BSR/ASHRAE Standard 232P

___________________Public Review Draft

Common Content and
Specifications for Building Data

Schemas

First Public Review (March 2024)
(Complete Draft for Full Review)

This draft has been recommended for public review by the responsible project committee. To submit a comment on

this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research--technology/public-review-

drafts and access the online comment database. The draft is subject to modification until it is approved for publication

by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published

addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the

ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the

U.S. or Canada).

The appearance of any technical data or editorial material in this public review document does not constitute

endorsement, warranty, or guaranty by ASHRAE of any product, service, process, procedure, or design, and ASHARE

expressly disclaims such.

© 2024 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any
part of this document must be obtained from the ASHRAE Manager of Standards, 180 Technology Parkway, Peachtree
Corners, GA 30092. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 180 Technology Parkway, Peachtree Corners GA 30092

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

ii

Table	of	Contents	

FOREWORD .. 4

1. PURPOSE .. 4

2. SCOPE ... 4

3. DEFINITIONS AND SYMBOLS ... 4

3.1 Definitions .. 5

4. COMPLIANCE WITH THE STANDARD .. 5

4.1 Extensibility .. 5
4.2 Schema Format ... 5
4.3 Serialization Format ... 6

5. DATA MODEL CONTENT ... 6

5.1 Data Group Composition. ... 6
5.2 Data Element Attributes. .. 6
5.3 Data Type Definitions. ... 7
5.3.1 Fundamental Data Type Definitions .. 7
5.3.2 Common String Data Type Definitions .. 7
5.3.3 Derived and Composite Data Type Definitions .. 9

5.4 Units ... 10
5.4.1 Units in Machine‐Readable Schema .. 10
5.4.2 Units in Human‐Readable Documentation.. 11
5.4.3 Unit Systems (Informative) .. 11

5.5 Constraints .. 11
5.5.1 Range .. 11
5.5.2 Multiple ... 12
5.5.3 Set .. 12
5.5.4 Selector .. 12
5.5.5 String Pattern .. 12
5.5.6 Data Element Value ... 12
5.5.7 Array Length Limits ... 13

5.6 Required Data Elements ... 13
5.6.1 Unconditional .. 13
5.6.2 Prerequisite Definition ... 13
5.6.3 Prerequisite Value ... 13
5.6.4 Combining Prerequisite Conditions ... 13

5.7 ID .. 14

6. DATA MODEL SPECIFICATIONS .. 14

6.1 Documentation ... 14
6.1.1 Identification ... 14
6.1.2 Version History .. 14
6.1.3 Use Case .. 14
6.1.4 Scope and Description ... 14

6.2 Data Model ... 15
6.2.1 Data Model Hierarchy ... 15
6.2.2 Enumerations .. 15

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

iii

6.2.3 Data Groups .. 15
6.2.4 Verification Rules ... 15
6.2.5 Publication Rules ... 15
6.2.6 Application Rules ... 16

7. COMMON DATA GROUPS .. 16

7.1 Metadata ... 16
7.1.1 Versioning .. 17

8. REUSABLE DATA GROUPS .. 17

9. REFERENCES .. 19

A.1 Pre‐existing Names .. 20

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

4

(This foreword is not part of this standard. It is merely informative and does not contain
requirements necessary for conformance to the standard. It has not been processed according to the
ANSI requirements for a standard and may contain material that has not been subject to public
review or a consensus process. Unresolved objectors on informative material are not offered the right
to appeal at ASHRAE or ANSI.)

FOREWORD

When a standard needs to include a data model, the first thing that the authors need to decide is how to
format and document the data model. This effort takes time away from developing the content of the
standard. Standard 232 aims to provide a standard method for designing and documenting data models
that are included in other standards. This standardization has the benefit of freeing up authors of other
standards to concentrate on just the content of the standard and for adopters of multiple standards with
data models from having to take time to determine how the data model is formatted and specified.

This standard defines the structures, conventions, and formats (i.e., meta-schema) for data models based
on schemas, such as, XML or JSON. It is not intended for semantic schemas. As much as possible, the
standard is schema format agnostic and describes the content in a generic fashion. In this way, the standard
can continue to be relevant even as new schema formats are developed. The standard does not include any
data models of its own.

The standard has multiple parts. The first part of the standard describes how to structure and format the
data model. The next part describes how to document the data model in a human-readable format. Then
data groups that are common to all Standard 232 compliant data models and data groups that are generic
and universal for use in other data models are described. Finally, informative naming guidelines and
examples are included.

The developers of Standard 232 recognize that there are many ways to format and document a data model
and some alternatives may work better than those chosen here for a specific data model. But the benefits
of overall standardization across multiple data models outweigh the limits of standardization. Since it is
impossible to cover everything that may need to be included in a data model, the intent is for the information
included in the standard to be extensible when needed, as long as the rules established in the standard are
not violated. The hope that any extensions needed by other standards will be suggested back to this standard
for possible inclusion in future versions.

The content of Standard 232 was first developed in the writing of ASHRAE Standard 205 and further refined
in the IBPSA-USA Building Data Exchange committee. It was moved into a stand-alone standard to
improve referencing by other standards such as ASHRAE Standard 229.

1. PURPOSE

1.1 Purpose. Define metaschemas (such as data types, data elements, naming conventions, and formats) to
specify and validate other standard schemas for data exchange among building performance and HVAC&R
software.

2. SCOPE

2.1 Scope. This standard applies to data models and schemas specified in other standards for the design,
operation, and performance of buildings.

3. DEFINITIONS AND SYMBOLS

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

5

3.1 Definitions

 alternative: a set of data types allowed for a data element where one, and only one corresponding value
is provided.

array: an ordered collection of values of a single data type.

attribute: provides extra information about a data element. Attributes have name and type properties
and are defined within the data model specification. An attribute can appear 0 or 1 times within a given
element. Attributes are either optional or required (by default they are optional).

data element: a named data item with an explicit data type.

data group: multiple data elements grouped together

data model: a collection of data groups and enumerations.

data model specification: a document of a data model and its relevant context.

data type: an attribute that specifies how to interpret the value of the data (see Section 5.3 for data type
definitions).

enumeration: a data type consisting of a finite set of enumerators. Enumerations define a “controlled
vocabulary” for the value for an attribute.

enumerator: a member of an enumeration set whose name is a unique identifier that behaves as a
constant in a computer language.

regular expression: (sometimes called a rational expression) a sequence of characters that define a
search pattern, mainly for use in pattern matching with strings, or string matching.

serialization: the process of converting a data object—a combination of code and data represented
within a region of data storage—into a series of bytes that saves the state of the object in an easily
transmittable form.

serialization format: the file format used to transmit a serialization

unit system: units of measurement used within a data model (e.g., I-P vs SI).

4. COMPLIANCE WITH THE STANDARD

To comply with this standard, a data model shall include a schema which validates versus the specifications
in the standard and documentation which includes the sections specified in the standard.

4.1 Extensibility
A data model that extends the specification included in the standard or includes additional documentation
is still compliant if it does not change or contradict the requirements included in the standard.

A data model specification shall clearly state whether the data included in the data model is extensible or
not.

4.2 Schema Format

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

6

The data model shall state which schema formats are allowed (JSON schema, XSD, etc.), to define the data
model.

4.3 Serialization Format

The data model shall state which serialization formats (XML, JSON, etc.), are allowed to transmit data
complying to the specification.

5. DATA MODEL CONTENT

A data model organizes data elements in data groups and standardizes how the data elements relate to one
another.

All named data model components shall be case-sensitive and unique within their scope.

Informative note: Conventions used within this document generally follow those defined in the Python
Style Guide (Rossum 2013).

5.1 Data Group Composition.

A data group is a collection of data elements and embedded data groups.

Data group names shall be “CapitalizedWords”. The names of data groups that conform with specific,
reusable data structures (e.g., TimeSeries and LookupTable) shall be prefixed with their type name. Data
groups that do not fall within this category shall not be prefixed with established type names.

Informative note: Regular expression pattern: ([A-Z]([A-Z]|[a-z]|[0-9])*$)

5.2 Data Element Attributes.

Data elements shall be characterized in data groups by the attributes shown below.

Attribute Description Notes

Name Public name of data element

Description Text description that defines the
meaning of the data element

Type Type of data element See Section 5.3

Units Units of data element See Section 5.4

Constraints A list of constraints on the data
element value that can be verified
against the schema

See Section 5.5

Required Indicates whether data element is
mandatory when containing data
group is present

See Section 5.6

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

7

ID Indicates whether data element
can be used to reference an
instance of the data group

See Section 5.7

Notes Any supplementary information

Data element names shall be “lower_case_with_underscores”.

Informative note: Regular expression pattern: (^([a-z]+)(_([a-z]|[0-9])+)*$)

5.3 Data Type Definitions.

Each data element shall have one of the data type attributes described below.

5.3.1 Fundamental Data Type Definitions

Data Type Description Examples

Integer A positive or negative whole number (i.e., a number that
can be written without a fractional part).

3, 19, -4

Numeric A number that may include a fractional part with optional
leading sign and optional exponent (engineering notation).

3.43, 0, -4, 1.03e4

Boolean True or false. true, false

String A sequence of characters of any length using any
(specified) character set.

Indirect evaporative
cooler

5.3.2 Common String Data Type Definitions

The following data types are a predefined subset of the fundamental “string” data type conforming to the
regular expression patterns provided.

Informative Note: Data models may append additional string data types that are useful for their purposes.

Data Type Description Regular Expression Pattern Examples

UUID An effectively unique
character string
conforming to ITU-T
Recommendation
X.667 (ITU-T 2012).

[0-9,a-f,A-F]{8}-[0-9,a-f,A-F]{4}-[0-9,a-f,A-
F]{4}-[0-9,a-f,A-F]{4}-[0-9,a-f,A-F]{12}

“123e4567-e89b-12d3-a456-
426655440000”

Date A calendar date
formatted per ISO
8601 (ISO 2019)

Informative Note: for
formats that include a
fundamental data type

[0-9]{4}-[0-9]{2}-[0-9]{2} “2015-04-29”

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

8

for Date that can be
used instead of a
string

Timestamp Date with UTC time
formatted per the
extended format in
ISO 8601 (ISO 2019)

Informative Note: for
formats that include a
fundamental data type
for DateTime that can
be used instead of a
string

[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-
9]{2}([\+-]?[0-9]{2}:[0-9]{2})?

“2016-06-29T14:35”

GenericTimestamp Timestamp without
denoting a specific
year. In the form
(G/F)(+/-)Y(YYY)-
MM-
DDTHH:MM:SS.f.

G: Gregorian
Calendar (leap years
every 4 years except
years divisible by
100)

F: Fixed Calendar (no
leap years)

Informative Note:
Negative years
indicate years before
year zero and may be
used to indicate
timestamps before
timestamps of interest
(e.g., initialization
periods for simulated
data).

[GF][\+-]?[0-9]+-[0-9]{2}-[0-9]{2}T[0-
9]{2}:[0-9]{2}([\+-]?[0-9]{2}:[0-9]{2})?

“F0-01-01T00:00:00”

TimeDuration Duration of time
formatted per ISO
8601 (ISO 2019)

Informative Note: for
formats that include a
fundamental data type
for DateTime that can
be used instead of a
string

^(-
?)P(?=\d|T\d)(?:(\d+)Y)?(?:(\d+)M)?(?:(\d+)([
DW]))?(?:T(?:(\d+)H)?(?:(\d+)M)?(?:(\d+(?:\.
\d+)?)S)?)?$

“P1Y2DT0H3M”

Version Version identifier in
the form
major.minor.patch as
defined by SemVer

(0|[1-9][0-9]*)\.(0|[1-9]][0-9]*)\.(0|[1-9]][0-
9]*)(?:-((?:0|[1-9]][0-9]*|][0-9]*[a-zA-Z-
][0-9a-zA-Z-]*)(?:\.(?:0|[1-9]][0-9]*|][0-
9]*[a-zA-Z-][0-9a-zA-Z-]*))*))?(?:\+([0-9a-

“1.1.3”, “1.2.0-beta-92”

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

9

(SemVer 2016). zA-Z-]+(?:\.[0-9a-zA-Z-]+)*))?

Informative note: Examples of GenericTimestamps are provided in Informative Appendix B: Generic
Timestamp Examples.

5.3.3 Derived and Composite Data Type Definitions

5.3.3.1 Data Group

Nested data groups shall be denoted by defining a data element whose data type is the name of a defined
data group wrapped in round brackets and predicated by “Group”. Example:
Group(PerformanceMapCooling).The nested data group can be constrained to have a data element
with a specific value (See Section 5.5.6).

5.3.3.2 Enumeration

An enumeration is a data type that takes one of a predefined set of named enumerator values. Each
enumeration shall be given a unique data type name and shall define the set of string enumerators. Data
elements representing enumerations shall be denoted in a data group by wrapping the name of the
enumeration in round brackets predicated by “Enumeration” as the data type. Example:
Enumeration(CompressorType).

Informative note: In computer science, an enumeration is a set of values that is converted to a list of
constants (e.g., 0, 1, 2, 3, etc.).

Attribute Description Notes

Enumerator Public name of enumerator

Description Text description that defines the
meaning of the enumerator

Display Text Text used by an application for
enumerator

Notes Any supplementary information

Enumeration names shall be “CapitalizedWords”. Enumeration names shall not be prefixed with type
names used for specific, reusable data structures.

Enumeration data elements shall have names that match their enumeration type (e.g., compressor_type
should be the name of a data element of the CompressorType enumeration) except where more than
one data element of the same enumerated type is used in the same data group. In that situation,
distinguishing prefix(es) shall be added to the type name. For example, if a device uses two liquids, data
elements could be named condenser_liquid_type and evaporator_liquid_type.

Informative note: Regular expression pattern: (^([A-Z]([A-Z]|[a-z]|[0-9])*$)

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

10

Enumerator names shall be “UPPER_CASE_WITH_UNDERSCORES”. This is the convention often used
for constant values.

Informative note: Regular expression pattern: (^([A-Z]([A-Z]|[0-9])*)(_([A-Z]|[0-9])+)*$)

5.3.3.3 Array

Arrays shall be denoted in a data group by wrapping the data type of a data element in round brackets
predicated by “Array”. Examples: Array(Numeric) or Array(Enumeration(CompressorType)).

5.3.3.4 Alternative

A set of alternative data types where one, and only one corresponding value is provided. Alternatives
shall be denoted in a data group by wrapping a comma separated list of alternative data types in round
brackets predicated by “Alternative”. Examples: Alternative(Numeric, String) or
Alternative(Group(RS0001), Group(RS0002)).

5.3.3.5 Pattern
A regular expression pattern as defined by ECMA-262 (ECMA 2019). Used for characterizing data that
corresponds to a group (e.g., model numbers).

Informative note: For example: CA225FB.[1-9]

5.3.3.6 References

An alternative to embedding data groups is supplying an identifying name of a data group instance. This
can be useful for reducing redundant data in a serialized instance of the data model. Any data group used
as a reference must have a data element called “id”.

Data element “ids” shall be unique among data elements of the data group type within an instance of the
data model.

References shall be denoted in a data group by wrapping the referenced data group in round brackets
predicated by “Reference”.

Example: “Reference(Group(DataGroup))”.

References may be combined with embedded data groups to allow for flexible input. Example:
“(Reference(Group(DataGroup)), Group(DataGroup))”.

5.4 Units

5.4.1 Units in Machine-Readable Schema

Units of all values in all data models shall be documented using symbols defined below.

If a numeric data element does not have units, the hyphen (-) character shall be used for its units.

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

11

Symbols shall appear in lower case unless the unit name has been taken from a proper name. In this case,
the first letter of the symbol shall be capitalized.
When combining base units into derived units, the following rules shall apply:

● For a symbol raised to a power, use the symbol followed by the power (e.g., m2).
● For the product of two symbols, use the hyphen (-) (e.g., N-m).
● For the quotient of two symbols, use the solidus (/) (e.g., W/m2-K)
● Use only one solidus symbol per derived unit (e.g., m/s2, not m/s/s).
● Do not use parentheses (e.g., W/m2-K, not W/(m2-K)).
● Do not use negative exponents (e.g., W/m2-K, not W-m-2-K-1).

5.4.2 Units in Human-Readable Documentation

Units of all values in all data models shall be documented using symbols defined below.

If a numeric data element does not have units, the hyphen (-) character shall be used for its units.

Symbols shall appear in lower case unless the unit name has been taken from a proper name. In this case,
the first letter of the symbol shall be capitalized.

When combining base units into derived units, the following rules shall apply:

● For a symbol raised to a power, use the symbol followed by the power as a superscript (e.g., m2).
● For the product of two symbols, use the interpunct or half-raised dot (∙) (e.g., N∙m).
● For the quotient of two symbols, use the solidus or forward slash (/) (e.g., W/m2)
● Use only one solidus symbol per derived unit (e.g., m/s2, not m/s/s).
● Use parentheses for any denominator that includes more than one symbol. (e.g., W/(m2∙K), not

W/m2∙K).
● Do not use negative exponents (e.g., W/(m2∙K), not W∙m-2∙K-1).

5.4.3 Unit Systems (Informative)

When selecting the unit system used in a Data Model, the following should be considered:

 Should allow for values to be represented exactly.
 Data elements should only have a single unit designated as using dual units introduces potential

conversion errors that mean the exact value cannot be determined.
 SI units are preferred but other unit systems could be considered for data models that have

historically used other unit systems or exclusively apply to regions adopting different unit systems.
 for data elements that have native units those should be used.
 Should be applied consistently across the data model.

5.5 Constraints

The following constraints are used for the “Constraints” data element attribute. When multiple constraints
apply to the same data element, the constraints shall be specified as a list.

5.5.1 Range

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

12

The constraint for numerical elements with valid minimum and/or maximum values shall be expressed as
numerical constants using <, <=, >=, or >. When the constraint is applied to an array data type, the
constraint applies to all values in the array.

Informative note: A numerical data element that is required to be greater or equal to zero has the constraint
defined as >=0.

5.5.2 Multiple

The constraint for numerical elements that must be multiples of a number shall be expressed using %.

Informative note: A numerical data element that is required to be a multiple of two has the constraint
defined as “%2”.

5.5.3 Set

The constraint for elements that must be one of a set of valid values shall be specified by placing the valid
values in between round brackets predicated by the word “Set”, separated by commas.

Informative note: A numerical data element that is required to be the one of the years 2005, 2008, and 2012
has the constraint defined as Set(2005,2008,2012).

Informative note: A set constraint compares the value of the data element versus the list of allowed values
while an enumeration is a set of values that is converted to a list of constants (e.g., 0, 1, 2, 3, etc.)

5.5.4 Selector

The constraint for alternative data elements where the choice of alternative depends on the value of an
enumeration data element shall be specific by placing the corresponding enumerator values in a comma
separated list enclosed in parentheses following the enumeration data element name. In this case, the order
of the enumerator values shall follow the same order of their corresponding alternative selection.

Informative note: Example: If a data element performance_map has the alternative data type of
(Group(PerformanceMapDiscrete), Group(PerformanceMapContinuous)) and there
is an enumeration data element performance_map_type that has enumerators CONTINUOUS and
DISCRETE, then the selector constraint on performance_map would be stated as
performance_map_type(CONTINUOUS, DISCRETE).

5.5.5 String Pattern

The constraint for string data elements that must match a specific pattern shall be specified as a regular
expression of the pattern. For string data elements where all possible options are known, an enumeration
shall be used instead of a string pattern (see Section 5.3.3.2).

Informative note: When a string pattern constraint is to be used on multiple data elements, then a specific
string data type should be defined instead.

5.5.6 Data Element Value

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

13

The constraint for nested data group data elements that must have a data element with a specific value shall
be specified by placing the name of the data element followed by the equals sign (=) and the required value.

Informative note: Example: If a data element curve_fit has a nested data group data type
{CurveFit} having an enumeration data element type that is required to have a value of LINEAR, then
the constraint on curve_fit is stated as type=LINEAR.

5.5.7 Array Length Limits
Limitations on array lengths shall be denoted using a set of square brackets containing the minimum and
maximum lengths of the array separated by two periods. Example: A numeric array that must have at least
one value, but no more than four values would appear as[1..4].

Arrays with no minimum length (that is, it may have zero values) shall be denoted with no value before the
two periods. Example: [..4].

Arrays with no maximum length shall be denoted with no value after the two periods. Example: [1..].

5.6 Required Data Elements

The “Required” data element attribute is used to indicate the conditions where a data element value is
required if the containing data group is present. The following conditions are allowed.

5.6.1 Unconditional

The data element is unconditionally required. A data element that is unconditionally required shall be
denoted with a Boolean true.

5.6.2 Prerequisite Definition

The data element value shall be required if a specific prerequisite data element is defined in the serialization
regardless of the value of the prerequisite data element. A data element dependent, that is required when
the prerequisite data element prerequisite is defined, has the requirement stated as if prerequisite
present. A data element that is required when the prerequisite data element is not defined has the
requirement stated as if prerequisite not present.

5.6.3 Prerequisite Value

The data element value shall be required if a specific prerequisite data element is defined and is equal to
(or not equal to) a specific value in the serialization. A data element option_a, that is required when the
prerequisite data element option_type has the value OPTION_A, has the requirement stated as if
option_type=OPTION_A. Similarly, a data element minimum_speed, that is required when the
prerequisite data element speed_type does not have the value SINGLE_SPEED, has the requirement
stated as if speed_type!=SINGLE_SPEED. The symbol != shall be used to denote not equals to.

5.6.4 Combining Prerequisite Conditions

When multiple prerequisite conditions are needed to define when a data element is required, these
conditions are combined using and and/or or and grouped as needed with parentheses. Combined
conditions begin with a single if.

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

14

Informative note: Example: if (prerequisite present and option_type=OPTION_A) or
option_type=OPTION_B.

5.7 ID

The “ID” data element attribute is used to indicate when the data element value is used to reference an
instance of the data group from a different data group. A data group shall have a maximum of one data
element indicated as the “ID” data element. The value of an “ID” data element shall be unique from all
other instances of the data group. The “ID” data element shall be denoted by a Boolean true.

6. DATA MODEL SPECIFICATIONS

The Data Model specification shall include human-readable documentation that includes all the information
in this section.

6.1 Documentation

6.1.1 Identification

A string code which uniquely identifies each data model.

6.1.2 Version History

A version history for the data model shall be included that includes the version number, the date the version
is published, and a description of relevant changes.

Informative note: There are many possible formats for the version history, including a simple table
documenting the versions, semantic versioning, and links to repositories. A method that works best for the
specific data model should be used.

6.1.3 Use Case

The intended use case for the Data Model describing how and why the Data Model is to be used.

Informative note: The description of the use case should conform to ASHRAE Guideline 20 (ASHRAE
2016).

6.1.4 Scope and Description

A narrative section providing information that defines the content covered by the data model. The following
sections shall appear in each data model specification.

6.1.4.1 Applicability

A description of the intended applications covered by the data model.

6.1.4.2 Exclusions

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

15

A description of related applications explicitly not covered by the data model. Data models with no
identified exclusions shall indicate this by stating “None”.
6.2 Data Model

This section specifies the local data groups and local enumerations that comprise the data model.

6.2.1 Data Model Hierarchy

Each data model shall illustrate the hierarchy and relationship of data groups comprising a conforming data
model instance.

6.2.2 Enumerations

Any enumerations specific to the data model shall be defined prior to any data group definitions where they
are referenced.

6.2.3 Data Groups

A collection of tabular representations of the data groups that comprise the data model.

6.2.4 Verification Rules

Data model documents shall include a description of computable rules used to verify minimal data validity
and accuracy.

Basic data format rules are implicit in data element data types and are enforced via automated validation
against a schema. Valid value ranges shall be included in the “Constraints” attribute of the data element
definitions. Rules of this type shall not be restated in Verification Rules.

Additional rules shall be included in the “Verification Rules” section specific to the application of the data
model. Typical examples are logical relationships among values and physical constraints such as:

● Cross-element consistency checks.
● Physically-based tests that allow detection of impossible values. For example:

○ Psychrometric states that imply greater than 100% relative humidity
○ Geometric surface points shall be coplanar

The failure of any verification test shall indicate invalid data.

A fully verified data model instance shall be both validated against a schema and verified based on the
Verification Rules.

Informative note: The set of verification tests in a data model specification may not be sufficient to detect
all invalid data.

6.2.5 Publication Rules

This section shall provide instructions and advice for data publishers to create data model serializations.

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

16

Informative note: Any information that makes it easier for the data publisher to understand the data
requirements (e.g., minimum grid spacings) can be included in this section.

6.2.6 Application Rules

This section shall provide instructions and advice for application developers to use the data included in data
model serializations.

Informative note: Any information that makes it easier for the application developer in consuming the data
(e.g., modeling assumptions and/or extrapolation methods) can be included in this section.

7. COMMON DATA GROUPS

7.1 Metadata

Name Description Type Units Constraints Required Notes

schema_author Name of the
organization that
published the
schema

String true Identifies the organization that
defined the schema

schema_name Schema name or
identifier

String true Identifies the schema used to
define the data content

schema_version The version of the
schema the data
complies with

Version true

schema_url The Uniform
Resource Locator
(url) for the schema
definition and/or
documentation

String

author Name of the entity
creating the
serialization

String true Identifies the organization that
created the file.

id Unique identifier UUID Assigned by data publisher to
identify the contained data

Shall remain unchanged for
revised data

description Description of data
(suitable for
display)

String true

time_of_creation Timestamp
indicating when the
serialization was
created

Timestamp true Updated anytime any data
content is modified

version Integer version
identifier for the
data

Version Used by data publisher to track
revisions of the data

Shall be incremented for each
data revision

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

17

source Source(s) of the
data

String Used by data publisher to
document methods (e.g.,
software and version) used to
generate data

Informative note: source may be
different from other data
source(s) included elsewhere
within the data

disclaimer Characterization of
accuracy,
limitations, and
applicability of this
data

String

notes Additional
Information

String

7.1.1 Versioning

There are three data elements to be used to provide versioning of a data model serialization.

• The schema_version indicates the version of the data model specification schema that was used to
create the serialization.

• The id uniquely identifies the set of data covered by the serialization. An id shall be assigned when the
serialization is first created.

• The version indicates the version of the data included in the serialization. The version shall be
incremented whenever any data in the serialization is modified.

Informative note: The id and the version can be used in conjunction to provide versioning that both
denotes what the data in the serialization covers (the id) and different versions of that data (the version).
Not all data models will need all three data elements for versioning. Only schema_version is a required
data element and the others can be used when needed to provide complete version information for the data
in the serialization.

8. REUSABLE DATA GROUPS

8.1.1.1 TimeSeries

TimeSeries

Name Description Type Units Constraints Required Notes

display_name The name for the
time series data

String true

units The units for the
time series data

String true

value_type The
TimeSeriesType
of the data

Enumeration(TimeSeriesType) true

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

18

value_time_intervals The time
intervals for the
data

Reference(Group(TimeIntervals)) true

values Array with the
series values

Array(Numeric) [1..] true

source_time_intervals The time
intervals for the
source data type
for the values

Reference(Group(TimeIntervals))

source The
DataSourceType
for the data

Array(Enumeration(DataSourceType)) [1..]

uncertainty_time_intervals The time
intervals for the
uncertainty of the
values

Reference(Group(TimeIntervals))

uncertainty The uncertainty
of the values

Array(Numeric) [1..]

notes_time_intervals The time
intervals for the
notes for the
values

Reference(Group(TimeIntervals))

notes The notes for the
values

Array(String) [1..]

TimeSeriesType

Enumerator Description Notes
INSTANTANEOUS Instantaneous Values reflect the instant of the current timestamp
AVERAGE Average Values reflect the average between the previous

timestamp and the current timestamp
SUM Sum Values reflect the integrated sum between the

previous timestamp and the current timestamp
CUMULATIVE Cumulative Values reflect the cumulative sum between the

starting timestamp and the current timestamp

DataSourceType

Enumerator Description Notes
DIRECT_MEASURED Direct Measurement
DERIVED_MEASURED Derived Measurement
MODELED Models
INTERPOLATED Interpolated
ASSUMPTION Assumption
UNKNOWN Unknown

TimeIntervals

Name Description Type Units Constraints Required Notes

id Reference id ID - true

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

19

starting_time Beginning of
the data

Alternative(Time
stamp,GenericTim
estamp)

 true The starting time
for the time
series.

regular_intervals Duration of
regular intervals

TimeDuration - If timestamps not
present and
intervals not
present

intervals Array of time
intervals

Array(TimeDurati
on)

- [1..] If timestamps not
present and
regular_intervals
not present

Informative note:
For repeating
intervals, the ISO
8601 format of
‘Rn/’ can be
used.

timestamps Array of
timestamps

Alternative(Arra
y(Timestamp),Arr
ay(GenericTimest
amp))

 [1..] If intervals not
present and
regular_intervals
not present

labels Informal labels
describing each
interval

Array(String) e.g., month
names for
monthly intervals

notes Array(String)

Informative note: Examples of TimeIntervals instances are provided in Informative Appendix C: Time
Interval Examples.

8.1.1.2 Binary

Name Description Type Units Constraints Required Notes

binary_encoding Encoding used
for binary string

Enumeration true Identifies the encoding method
used to create the binary string

binary_string The binary data
string

String true The binary data string

9. REFERENCES

G. van Rossum, B. Warsaw, and N. Coghlan. PEP 8 – Style Guide for Python Code. 2013. URL:
https://peps.python.org/pep-0008/#descriptive-naming-styles

ITU. ITU-T X.667: Information technology – Procedures for the operation of object identifier
registration authorities: Generation of universally unique identifiers and their use in object
identifiers. ITU, 2012.

ISO. ISO 8601: Date and Time Format. ISO, 2019.

SemVer. Semantic Versioning 2.0.0. 2016. URL: https://semver.org/.

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

20

ECMA. Standard ECMA-262, ECMAScript® 2019 Language Specification. 2019. URL: https:/
/www .ecmainternational.org/publications/standards/Ecma-262.htm.

ASHRAE. ASHRAE Guideline 20-2010 Documenting HVAC&R Work Processes and Data Exchange
Requirements. Atlanta, Georgia, 2010.

Informative Appendix A: Naming Guidelines

Readability is more important than length. Although there is the potential that long names will increase
the size of serializations, accurate understanding and application of data is the overriding consideration.
Unambiguous and expressive names are preferred, for example, evaporator_pressure_drop rather
than evap_pres_drp. It is also anticipated that messaging infrastructure will provide data compression
for efficient transfer of serializations.

Consistently specify dimensions at beginning or end of name. Determine if dimensions should be stated
at the beginning (temperature_entering) or the end (entering_temperature) of the name and
apply the choice consistently throughout the data model.

Avoid names that include a defined unit of measurement. For example, do not use names such as
air_cfm or pump_gpm. Instead, consider names such as air_volumetric_flow_rate or
pump_volumetric_flow_rate.

Do not include data types in names. Use ahri_rated, not ahri_rated_boolean.

Avoid abbreviations and acronyms. Exceptions shall be allowed where abbreviations and/or acronyms
are explicitly defined within the data model.

Avoid using names that conflict with widely used programming languages. For example, do not use
“case”, “switch”, “default”, etc.

Avoid names that differ only in case. Not all programming languages are case-sensitive, so it is best to
avoid names differing only in case.

Names should not include a repetition of the names of containing structures or data groups. The
container provides adequate context; using its name in component names is redundant and needlessly
lengthens component names. For example, the capacity of a chiller included in a chiller data group
should be called simply capacity rather than chiller_capacity.

Consider “Type” at the end of enumeration names. Clear enumeration names denote that the enumerants
are a list of related choices by utilizing terms like choice, options, type, enum, etc., in their names. Examples
are ControlChoice, InstallChoice, CompressorType, and EnumCondenser.

A.1 Pre-existing Names

Where possible, use names and definitions from existing relevant data dictionaries, schemas, and ontologies
in priority of the order shown below.

Source Description URL

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

21

BEDES Building Energy Data Exchange
Specification

https://bedes.lbl.gov/

ASHRAE
Terminology

Assembled by ASHRAE
Technical Committee (TC) 1.6,
Terminology

https://www.ashrae.org/resources--publications/free-
resources/ashrae-terminology

gbXML Green Building XML http://www.gbxml.org/

IFC Industry Foundation Classes http://www.buildingsmart.org/

CEC SDD California Energy Commission
Standards Data Dictionary

http://bees.archenergy.com/software.html

BuildingSync
XML

Building data exchange format
focused on Commercial Building
Energy Audits

https://buildingsync.net

HPXML Schema for exchanging data
related to homes

https://www.hpxmlonline.com/

CityGML 3D city model standard Citygml.org, https://www.ogc.org/standards/citygml

DOE-2 BDL DOE-2 Building Description
Language

http://doe2.com/DOE2/

EnergyPlus IDD EnergyPlus Input Data
Dictionary

https://energyplus.net/

COBie Construction Operations Building
Information Exchange

http://www.wbdg.org/resources/cobie.php

COMNET Commercial Energy Services
Network

http://comnet.org/

BrickSchema https://brickschema.org/

QUDT https://www.qudt.org/

obXML Occupant Behavior XML https://behavior.lbl.gov/?q=obXML

Informative Appendix B: Generic Timestamp Examples
Generic timestamps are useful when data is to be conveyed in a timeseries, but it does apply to a specific
year. This could include typical weather, schedules, simulation outputs, etc. This data could be for generic
years with or without including leap years.

The Generic Timestamp data type is similar to the Timestamp data type with some differences at the front
of the timestamp.

The Generic Timestamp starts with a letter denoting whether the time series will include leap years or not.
If the timestamp is preceded by the letter ‘F’ for fixed calendar, then none of the years will include leap
days. If the timestamp is preceded by the letter ‘G’ for Gregorian calendar, the Gregorian calendar rules for
leap years apply. This means that years divisible by 4 will include a leap day, except for years evenly
divisible by 100, but not by 400.

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

22

Following the letter is an optional + or – sign. Negative years indicate years before year zero and may be
used to indicate timestamps before timestamps of interest (e.g., initialization periods for simulated data).

Next is a 1-to-4-digit number denoting the year. The remainder of the generic timestamp follows the same
rules as the regular timestamp.

The overall format can be denoted as (G/F)(+/-)Y(YYY)-MM-DDTHH:MM:SS.f.

Using this for monthly intervals for a year without a leap day would look like this:
 timestamps: {F1-02-01T00:00, F1-03-01T00:00, F1-04-01T00:00, …}

and for hourly intervals would look like this:

 timestamps: {F1-01-01T01:00, F1-01-01T02:00, F1-01-01T03:00, …}

For a year with a leap day monthly intervals would look like this:

 timestamps: {G4-02-01T00:00, G4-03-01T00:00, G4-04-01T00:00, …}

and for hourly intervals would look like this:

 timestamps: {G4-01-01T01:00, G4-01-01T02:00, G4-01-01T03:00, …}

For a year without a leap day occurring one year prior to the period of interest would look like this:

 timestamps: {F-1-02-01T00:00, F-1-03-01T00:00, F-1-04-01T00:00, …}

and for hourly intervals would look like this:

 timestamps: {F-1-01-01T01:00, F-1-01-01T02:00, F-1-01-01T03:00, …}

Informative Appendix C: Time Interval Examples

Before the time series data can be specified, the time intervals for the data need to be specified. Multiple
time series can use the same time interval.

The first element in defining time intervals is the starting_time for the data. This represents the starting
time of the first interval. Knowing the starting time is required so that using the starting time and the interval
length defines when the next interval starts. If the time series data starts at the beginning of the year, the
starting time would look like this:

 starting_time: 2019-01-01T00:00

Next the intervals for the time series data need to be specified. There are multiple methods for defining the
intervals. If the data occurs in regular intervals that are exactly the same for the entire time series, the
regular_intervals data element can be used to specify that single regular interval. For example, specifying
a monthly interval would look like this:

 regular_intervals: P1M

and specifying an hourly interval would look like this:

 regular_intervals: PT1H

BSR/ASHRAE Standard 232P, Common Content and Specifications for Building Data Schemas
First Public Review Draft

23

For intervals that are not regular, there are two options for defining the intervals between the data values.
The first is to use intervals to specify the length of the interval. Using this for monthly intervals would
look like this:

 intervals: {P1M, P1M, P1M, …}

and for hourly intervals would look like this:

 intervals: {PT1H, PT1H, PT1H, …}

The other option is to specify the timestamps for the end of the intervals for the data value. Using this for
monthly intervals would look like this:

 timestamps: {2019-02-01T00:00, 2019-03-01T00:00, 2019-04-01T00:00, …}

and for hourly intervals would look like this:

 timestamps: {2019-01-01T01:00, 2019-01-01T02:00, 2019-01-01T03:00, …}

There are two optional data elements that can be included in the time intervals data groups. The labels data
element allows labels to be specified for each data value. For example, a label for each month of the year
would look like this:

 labels: {“Jan”,”Feb”,”Mar”,”Apr”,”May”,”Jun”,”Jul”,”Aug”,”Sep”,”Oct”,”Nov”,”Dec”}

Likewise, the notes data element allows for helpful information to be included for each value.

