BSR/ASHRAE Standard 133-2015R

Public Review Draft

Method of Testing Direct Evaporative Air Coolers

First Public Review (November 2023)
(Draft Shows Proposed Independent Substantive Changes to Previous Public Review Draft)

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research--technology/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHRAE of any product, service, process, procedure, or design, and ASHARE expressly disclaims such.

© 2023 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 180 Technology Parkway NW, Peachtree Corners, GA 30092. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 180 Technology Parkway NW, Peachtree Corners GA 30092
Standard 133-2015R
2nd Independent Substantive Change (ISC) Public Review Draft
Method of Testing Direct Evaporative Air Coolers

Note: In this document, changes to the first 133-2015R Publication Public Review Draft are indicated in the text by underlining (for additions) and strikethrough (for deletions).

3 DEFINITIONS AND ACRONYMS

appurtenance device electric input power: the electric input power to drive accessories — not including fans, pumps, or rotary devices — that are supplied as a standard component of the production model of the direct evaporative air cooler (DEC). Appurtenance device electric input power includes water metering devices, conductivity controllers, timers, dump cycle pumps, solenoids, and transformers providing low voltage to control mechanisms and freeze protection devices.

fan electric input power: the electric input power required to drive the fan and any drive train elements that are part of the fan.

pump or rotary device electric input power: the electric input power to drive the pump or rotary device used to distribute water in the DEC.

4 SYMBOLS AND SUBSCRIPTS

4.1 Symbols

\[W_E \] total of all the electric input power for devices completely within the air upstream of the media section except the fan, W (W)

\[W_L \] total of all the electric input power for devices completely within the air downstream of the media section except the fan, W (W)

\[WF_E \] electric input power for fan if completely within the air upstream of the media section, W (W)

\[WF_L \] electric input power for fan if completely within the air downstream of the media section, W (W)

\[W_{\text{ex}} \] total of all the electric input power for devices outside and thermally isolated from the airstream of the DEC, W (W)

\[W_{\text{total}} \] total DEC electric input power, W (W)
Revise Section 5 as shown below.

5. REQUIREMENTS

[...]

TABLE 1: Stability Criteria for Data Recording for Packaged DECs

<table>
<thead>
<tr>
<th>Measurement or Calculation Result</th>
<th>Values Calculated from Data Samples</th>
<th>Stability Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling capacity</td>
<td>\bar{q}, σ_q</td>
<td>$S_{\bar{q},std} \leq 0.05$</td>
</tr>
<tr>
<td>Total Electric Input Power</td>
<td>W_{total}, $\sigma_{W_{\text{total}}}$</td>
<td>$S_{W_{\text{total}}} \leq 0.05$</td>
</tr>
</tbody>
</table>

[...]

Revise Section 8 as shown below.

8. TEST DATA TO BE RECORDED

[...]

8.3 Test Data. Test data for each determination shall be recorded at each point of operation that satisfies the stability criteria. Readings shall be made simultaneously.

a. DEC inlet dry-bulb temperature t_{d0}, °C (°F)
b. DEC inlet wet-bulb temperature t_{w0}, °C (°F)
c. Ambient barometric pressure p_b, Pa (in. Hg)
d. DEC downstream dry-bulb temperature t_{d2}, °C (°F)
e. DEC downstream wet-bulb temperature t_{w2}, °C (°F)
f. Average fan speed for each fan N, rad/s (rpm)
g. The following electric input powers, power inputs, if applicable: $W_F, W_L, W_{ex}, W_E, W_L$ W (W)
h. Static pressure p_{std}, Pa (in. of water)
i. Static pressure p_{std}, Pa (in. of water)
j. Nozzle inlet airflow density ρ, kg/m³ (lbm/ft³)
k. All information required by ASHRAE Standard 41.2 to calculate the DEC volumetric airflow rate Q, m³/s (cfm) and the standard volumetric airflow rate Q_{std}, m³/s (scfm)
l. Water conductivity, (µS)
m. If a component DEC is not supplied with a pump or rotary device, record water flow to the DEC Q_w, m³/s (ft³/s)
n. The names of test personnel shall be listed.

Revise Section 9 as shown below.

9. CALCULATIONS

[...]

9.3 DEC Electric Input Power Input at Test Conditions.
The total electric input power input to the test unit is the sum of fan and pump or rotary device power and appurtenance device power.

$$W_{\text{total}} = W_F + W_L + W_{ex} + W_E + W_L \quad \text{W (W)}$$

SI/IP (9-1)

[...]

9.11 Fan Electric Input Power at Standard Conditions
Calculate the fan electric input power at standard conditions using Equation 9-25.
9.12 Total Fan Electric Input Power at Standard Conditions

Use Equation 9-26 to calculate the total fan electric input power at standard conditions.

\[
W_{\text{std}} = (W_E + WF_L)_{\text{std}} + W_{ex} + W_E + W_L \quad \text{SI/IP} \tag{9-26}
\]

Revise Section 10 as shown below.

10 TEST REPORT

10.2 Performance Curves. The following DEC test results shall be presented as performance curves:

- DEC standard volumetric airflow rate, \(Q_{\text{std}}\), SI or IP
- DEC standard total electric input power, \(W_{\text{std}}\), SI or IP
- DEC standard static pressure differential, \(\Delta P_{\text{std}}\), SI or IP
- DEC media saturation effectiveness, \(\varepsilon\), dimensionless
- DEC standard sensible cooling capacity, \(q_{\text{std}}\), SI or IP
- DEC overall performance, COP dimensionless (EER, Btu/(W-h))