BSR/ASHRAE Standard 193-2010 (RA 202X)

Public Review Draft

Method of Test for Determining the Airtightness of HVAC Equipment

First Public Review (October 2023)

THIS DOCUMENT IS OUT FOR REAFFIRMATION PUBLICATION PUBLIC REVIEW. THERE ARE NO SUBSTANTIVE CHANGES TO THE DOCUMENT. A REAFFIRMATION IS NECESSARY TO MAINTAIN THE ANSI DESIGNATION.

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research--technology/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHRAE of any product, service, process, procedure, or design, and ASHARE expressly disclaims such.

© 2023 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 180 Technology Pkwy NW, Peachtree Corners, GA 30092. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 180 Technology Pkwy NW, Peachtree Corners, GA 30092
ASHRAE Standard Project Committee 193
Cognizant TCs: TC 4.3, Ventilation Requirements and Infiltration, and
TC 6.3, Central Forced Air Heating and Cooling Systems
SPLS Liaison: K. William Dean

Michael R. Lubliner, Chair
Iain S. Walker, Vice-Chair
James Lee Austermiller
Roy R. Crawford
James B. Cummings
Glenn Friedman

Paul M. Haydock
Kevin E. Keller
Lalit Kumar
Collin L. Olson
Hans Paller

Elbert G. Phillips
Brian L. Reynolds
Armin Rudd
Steven Schneider
Steven Andrew Tice
George A. Yaeger

*Denotes members of voting status when the document was approved for publication

ASHRAE STANDARDS COMMITTEE 2013–2014

William F. Walter, Chair
Richard L. Hall, Vice-Chair
Karim Amerane
Joseph R. Anderson
James Dale Aswegan
Charles S. Barnaby
Steven F. Brunning
John A. Clark
Waller S. Clements

David R. Conover
John F. Dunlap
James W. Earley, Jr.
Steven J. Emmerich
Julie M. Ferguson
Krishnan Gowri
Cecily M. Grzywacz
Rita M. Harrold
Adam W. Hinge
Debra H. Kenney

Malcolm D. Knight
Rick A. Larson
Mark P. Modera
Cyrus H. Nasseri
Janice C. Peterson
Heather L. Platt
Douglas T. Reindl
Julia A. Keen, BOD ExO
Thomas E. Werkema, Jr., CO

Stephanie C. Reiniche, Manager of Standards

SPECIAL NOTE

This American National Standard (ANS) is a national voluntary consensus standard developed under the auspices of ASHRAE. Consensus is defined by the American National Standards Institute (ANSI), of which ASHRAE is a member and which has approved this standard as an ANS, as “substantial agreement reached by directly and materially affected interest categories. This signifies the concurrence of more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that an effort be made toward their resolution.” Compliance with this standard is voluntary until and unless a legal jurisdiction makes compliance mandatory through legislation.

ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review. ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, all must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on all Project Committees.

The Manager of Standards of ASHRAE should be contacted for:

a. interpretation of the contents of this Standard,
b. participation in the next review of the Standard,
c. offering constructive criticism for improving the Standard, or
d. permission to reprint portions of the Standard.

DISCLAIMER

ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information and accepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components, or systems tested, installed, or operated in accordance with ASHRAE’s Standards or Guidelines or that any tests conducted under its Standards or Guidelines will be nonhazardous or free from risk.

ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS

ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for rating purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitions of this equipment, and by providing other information that may serve to guide the industry. The creation of ASHRAE Standards and Guidelines is determined by the need for them, and conformance to them is completely voluntary.

In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied, that the product has been approved by ASHRAE.
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jonathan Humble</td>
<td>Chair</td>
</tr>
<tr>
<td>Douglas D. Fick</td>
<td>Vice Chair</td>
</tr>
<tr>
<td>Kelley P. Cramm</td>
<td></td>
</tr>
<tr>
<td>Abdel K. Darwich</td>
<td></td>
</tr>
<tr>
<td>Drake H. Erbe</td>
<td></td>
</tr>
<tr>
<td>Patricia Graef</td>
<td></td>
</tr>
<tr>
<td>Jaap Hogeling</td>
<td></td>
</tr>
<tr>
<td>Jennifer A. Isenbeck</td>
<td></td>
</tr>
<tr>
<td>Phillip A. Johnson</td>
<td></td>
</tr>
<tr>
<td>Gerald J. Kettler</td>
<td></td>
</tr>
<tr>
<td>Jay A. Kohler</td>
<td></td>
</tr>
<tr>
<td>Paul A. Lindahl, Jr.</td>
<td></td>
</tr>
<tr>
<td>James D. Lutz</td>
<td></td>
</tr>
<tr>
<td>Julie Majurin</td>
<td></td>
</tr>
<tr>
<td>Lawrence C. Markel</td>
<td></td>
</tr>
<tr>
<td>Margaret M. Mathison</td>
<td></td>
</tr>
<tr>
<td>Kenneth A. Monroe</td>
<td></td>
</tr>
<tr>
<td>Daniel H. Nall</td>
<td></td>
</tr>
<tr>
<td>Philip J. Naughton</td>
<td></td>
</tr>
<tr>
<td>Kathleen Owen</td>
<td></td>
</tr>
<tr>
<td>Gwelen Paliaga</td>
<td></td>
</tr>
<tr>
<td>Karl L. Peterman</td>
<td></td>
</tr>
<tr>
<td>Justin M. Prosser</td>
<td></td>
</tr>
<tr>
<td>David Robin</td>
<td></td>
</tr>
<tr>
<td>Christopher J. Seeton</td>
<td></td>
</tr>
<tr>
<td>Paolo M. Tronville</td>
<td></td>
</tr>
<tr>
<td>Douglas Tucker</td>
<td></td>
</tr>
<tr>
<td>William F. Walter</td>
<td></td>
</tr>
<tr>
<td>Susanna S. Hanson, BOD ExO</td>
<td></td>
</tr>
<tr>
<td>Ashish Rakheja, CO</td>
<td></td>
</tr>
</tbody>
</table>

Ryan Shanley, Senior Manager of Standards
CONTENTS

Method of Test for Determining the Airtightness of HVAC Equipment

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>2</td>
</tr>
<tr>
<td>1 Purpose</td>
<td>2</td>
</tr>
<tr>
<td>2 Scope</td>
<td>2</td>
</tr>
<tr>
<td>3 Definitions</td>
<td>2</td>
</tr>
<tr>
<td>4 Nomenclature</td>
<td>2</td>
</tr>
<tr>
<td>5 Test Apparatus and Specifications</td>
<td>3</td>
</tr>
<tr>
<td>6 Test Procedure</td>
<td>3</td>
</tr>
<tr>
<td>7 Data to be Recorded</td>
<td>5</td>
</tr>
<tr>
<td>Informative Annex A—Bibliography</td>
<td>5</td>
</tr>
</tbody>
</table>

NOTE

Approved addenda, errata, or interpretations for this standard can be downloaded free of charge from the ASHRAE Web site at www.ashrae.org/technology.
(This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objections on informative material are not offered the right to appeal at ASHRAE or ANSI.)

FOREWORD

One of the most important predictors of a building’s energy efficiency is its HVAC system. There are a number of ways to measure the performance of HVAC systems—energy efficiency ratings being one of the most common—but the airtightness of the equipment is obviously an important factor as well. Air that is not delivered to areas as specified in the building design is air that is not being used efficiently. With this in mind, ASHRAE Standard 193 was created to test the airtightness of HVAC equipment.

Targeted at systems that move less than 3000 cfm (1400 L/s), Standard 193 will provide results that may be used by cognizant authorities who wish to regulate the air leakage of HVAC equipment and by contractors and installers that wish to specify and install equipment with known leakage characteristics.

The approach taken in this method of test is to determine the air leakage rate of HVAC equipment at a fixed reference pressure difference. In this way Standard 193 is similar to other rating standards that perform evaluations at a single condition for comparison purposes rather than attempting to estimate performance for an individual installation. Because this test method can be applied to a wide range of equipment, it is beyond the scope of this standard to fully specify detailed test arrangements.

Currently the need for minimizing air leakage in HVAC systems is reflected in various ASHRAE standards. ASHRAE Standard 62.2 limits allowable air leakage between garages and houses due to leaks in forced-air HVAC systems. ASHRAE Standard 152 includes HVAC system air leakage in estimates of distribution system efficiency for residential buildings. But while these standards aim to reduce the overall air leakage found in HVAC systems, neither provides a way to determine the effectiveness of specific components in an HVAC system in preventing air leakage. Although ASHRAE Standard 130 includes a test method for measuring air leakage of air terminal units, it does not specify a fixed test pressure suitable for airtightness ratings.

This is a reaffirmation of Standard 193-2010. This standard was prepared under the auspices of ASHRAE. It may be used, in whole or in part, by an association or government agency with due credit to ASHRAE. Adherence is strictly on a voluntary basis and merely in the interests of obtaining uniform guidelines throughout the industry. This version of the reaffirmation has minor editorial changes.

1. PURPOSE

This standard prescribes a method of test to determine the airtightness of forced-air HVAC equipment prior to field installation.

2. SCOPE

2.1 This standard applies to the following:

a. Equipment intended for installation in ducted systems, including furnaces, heat pumps, air conditioners, coil boxes, filter boxes, and associated components.

b. Equipment that moves less than 3000 cfm (1400 L/s) of air.

2.2 This standard does not apply to ducts, plenums, or other field-constructed components.

3. DEFINITIONS

Where the following terms occur in this standard, the definitions provided in this section apply.

air-handling unit (AHU): any device that includes a fan or blower for moving air through ductwork. Examples include furnaces, fan-coil units, energy or heat recovery units, and exhaust fans.

cased coil: a heating or cooling coil that is mounted in a cabinet and contains no fan or blower.

duct-mounted air cleaner: a media air filter or other air-cleaning device that is mounted in a cabinet and has no fan or blower.

standard conditions: for the purposes of this standard, standard conditions are defined as follows: 68°F (20°C) for temperature, 0.07517 lb/ft³ (1.2041 kg/m³) for air density, and 29.92 in. Hg (1013.25 kPa) for barometric pressure.

variable-air-volume (VAV) box: a terminal air control device that regulates the amount of air entering a space; usually contains a damper but no fan or blower.

4. NOMENCLATURE

\[P_{\text{baro}} = \text{barometric pressure, in. Hg (kPa)} \]

\[Q_{\text{leak}} = \text{air leakage of equipment under test adjusted to standard conditions and corrected for background leakage, cfm (L/s)} \]

\[Q_{bg} = \text{background air leakage rate of the test apparatus, cfm (L/s)} \]

\[Q_{bg,\text{std}} = \text{background air leakage rate of the test apparatus adjusted to standard conditions, cfm (L/s)} \]

\[Q_{\text{meas}} = \text{measured air leakage rate, cfm (L/s)} \]

\[Q_{\text{meas, std}} = \text{measured air leakage of equipment under test adjusted to standard conditions, cfm (L/s)} \]

\[T_{\text{meas}} = \text{temperature of air flowing through the air flowmeter, } ^\circ \text{F (} ^\circ \text{C)} \]
(This foreword is not a part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

This is a reaffirmation of Standard 193-2010 (RA 2014). This standard was prepared under the auspices of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). It may be used, in whole or in part, by an association or government agency with due credit to ASHRAE. Adherence is strictly on a voluntary basis and merely in the interests of obtaining uniform guidelines throughout the industry. This version of the reaffirmation has no changes.
5. TEST APPARATUS AND SPECIFICATIONS

This method of test requires the depressurization and/or pressurization of HVAC equipment to a specified test pressure. The airflow rate required to maintain the applied pressures is the air leakage rate of the equipment under test, \(Q_{\text{leak}} \). Schematics of typical test apparatuses are shown in Figures 1 and 2.

5.1 Test Apparatus

The test apparatus shall consist of the following components:

a. An air-moving blower or equivalent device capable of controlling airflow for pressurizing or depressurizing the equipment under test to a pressure difference of 0.5 in. H\(_2\)O (125 Pa).

b. An airflow measuring device capable of measuring volumetric airflow at the required test pressure difference with the accuracy stated in Section 5.2.1.

c. A pressure-measuring device capable of measuring the required pressure difference with the accuracy stated in Section 5.2.2.

d. Temperature measurement devices capable of measuring air temperature with the accuracy stated in Section 5.2.3.

e. A pressure-measuring device to measure barometric pressure with the accuracy stated in Section 5.2.4.

5.2 Test Apparatus Specifications

The test apparatus shall meet the following specifications.

5.2.1 Airflows shall be measured with an accuracy equal to or better than 2 cfm (1 L/s) or 5% of measured flow, whichever is larger, and with a precision equal to or better than 1 cfm (0.5 L/s).

5.2.2 Pressures shall be measured with an accuracy equal to or better than 0.004 in. H\(_2\)O (1.0 Pa) and a precision equal to or better than 0.002 in. H\(_2\)O (0.5 Pa).

5.2.3 Temperature measurements shall be made using devices with an accuracy equal to or better than ±2°F (1°C) and with a precision equal to or better than ±1°F (0.5°C).

5.2.4 Barometric pressures shall be measured with an accuracy equal to or better than 0.15 in. Hg (0.5 kPa).

6. TEST PROCEDURE

This test procedure shall be used to determine the amount of airflow, \(Q_{\text{leak}} \), for the equipment under test. \(Q_{\text{leak}} \) shall be a positive value representing the magnitude of the measured airflow.

The background leakage described in Section 6.1 shall be measured for all test procedures. Table 1 shall then be used to select an additional equipment-specific test method to be performed. The barometric pressure, \(P_{\text{baro}} \), and the temperature, \(T_{\text{meas}} \), of the air flowing through the measurement device shall be determined for each airflow measurement.

6.1 Background Air-Leakage Rate of the Test Apparatus

6.1.1 An air impermeable blanking cap shall be used to cover the opening of the test apparatus to which the equipment under test is connected.

6.1.2 The air-moving device shall be turned on and used to create a pressure difference of 0.5 in. H\(_2\)O (125 Pa) between the inside and outside of the equipment under test, with the inside of the equipment depressurized relative to ambient conditions.

6.1.3 Measure the volumetric airflow, \(Q_{\text{bg-}} \).

6.1.4 Convert the background leakage flows to standard conditions, \(Q_{\text{bg-std}} \), using Equation 2 or 3, as applicable.

6.1.5 If positive pressure tests are to be performed, repeat the background leakage test in pressurization mode to determine \(Q_{\text{bg+std}} \).

6.2 Air-Leakage Test Methods

6.2.1 Depressurization Test

6.2.1.1 The equipment shall be connected to the air-moving device. An impermeable blanking cap shall be applied to the open end or ends of the equipment under test, if applicable. This connection shall be made with the same air sealing technique as used for the background air leakage measurements of Section 6.1.

6.2.1.2 The air-moving device shall be turned on and used to create a pressure difference of 0.5 in. H\(_2\)O (125 Pa) between the inside and outside of the equipment under test, with the inside of the equipment depressurized relative to ambient conditions. The pressure measurement location shall be selected to avoid, as much as possible, air velocities that could influence the measurement.

6.2.1.3 Determine the volumetric airflow through the measurement device \(Q_{\text{meas}} \) required to maintain this pressure difference. The airflow shall be converted to standard conditions, \(Q_{\text{meas, std}} \) using Equation 2 or 3, as applicable.

6.2.1.4 The background air leakage rate shall be subtracted from the measured air leakage rate to determine the air leakage rate of the equipment under test using Equation 1:

\[
Q_{\text{leak}} = Q_{\text{meas, std}} - Q_{\text{bg, std}}
\]

6.2.2 Pressurization Test

6.2.2.1 The equipment shall be connected to the air-moving device. An impermeable blanking cap shall be applied to the open end or ends of the equipment under test, if applicable. This connection shall be made with the same air sealing technique as used for the background air leakage measurements of Section 6.1.

6.2.2.2 The air-moving device shall be turned on and used to create a pressure difference of 0.5 in. H\(_2\)O (125 Pa) between the inside and outside of the equipment under test, with the inside of the equipment pressurized relative to ambient conditions. The pressure measurement location shall be selected to avoid, as much as possible, air velocities that could influence the measurement.

6.2.2.3 Determine the volumetric airflow through the measurement device \(Q_{\text{meas}} \) required to maintain this pressure difference. The airflow shall be converted to standard conditions, \(Q_{\text{meas, std}} \) using Equation 2 or 3, as applicable.

6.2.2.4 The background air leakage rate shall be subtracted from the measured air leakage rate to determine the air leakage rate of the equipment under test using Equation 1.
Figure 1 Schematic of test apparatus and equipment under test for pressurization or depressurization testing.

Figure 2 Schematic of test apparatus and equipment under test for split-test procedure.
6.2.3 Split Test

6.2.3.1 The equipment shall be split between its positive and negative pressure zones by sealing between the two pressure zones. This split can be made either with the blower in place or with the blower removed. If the blower is retained, then the inlets or outlets of the blower shall be covered such that they do not move or leak air during the test. If the blower is removed, an airtight cover shall be placed over the opening between the negative and positive pressure sections of the equipment under test. The cover shall be placed over the opening through which the blower discharges into the positive pressure section of the equipment. Any other openings between the positive and negative pressure zones shall also be sealed.

6.2.3.2 Positive Pressure Zone Measurements

The air-moving device shall be connected to the side of the equipment that is under positive pressure during normal operation, i.e., on the discharge side of the air-handling unit (AHU). The air-moving device shall be turned on and used to create a pressure difference of 0.5 in. H₂O (125 Pa) between the inside and outside of the equipment under test, with the inside of the equipment pressurized relative to ambient conditions. The airflow through the measurement device required to maintain this pressure difference (Q meas+) shall be measured. If there is more than one positive pressure zone, repeat this section of test for each zone and Q meas+ shall be the sum total from all positive pressure zones. The airflow shall be converted to standard conditions, Q meas+ std using Equation 2 or 3, as applicable:

\[Q_{\text{leak, std}} = \frac{Q_{\text{leak}}}{29.92} \left(\frac{528}{T_{\text{meas}} + 460} \right) \] \hspace{1cm} \text{(J-P)} \hspace{1cm} (2)

\[Q_{\text{leak, std}} = \frac{Q_{\text{leak}}}{29.92} \left(\frac{293}{101.325(T_{\text{meas}} + 273)} \right) \] \hspace{1cm} \text{(SI)} \hspace{1cm} (3)

6.2.3.3 Negative Pressure Zone Measurements

The air-moving device shall be connected to the side of the equipment that is under negative pressure during normal operation, i.e., on the inlet side of the blower in the equipment under test. The air-moving device shall be turned on and used to create a pressure difference of 0.5 in. H₂O (125 Pa) between the inside and outside of the equipment under test, with the inside of the equipment depressurized relative to ambient conditions. The airflow through the measurement device required to maintain this pressure difference (Q meas-) shall be measured. If there is more than one negative pressure zone, repeat this section of test for each zone and Q meas- shall be the sum total from all negative pressure zones. Convert the airflow to standard conditions (Q meas- std) using Equation 2 or 3, as applicable.

6.2.3.4 The background air leakage rate shall be subtracted from the measured air leakage rate to determine the air leakage rate of the equipment using Equations 4 and 5.

\[Q_{\text{leak+}} = Q_{\text{meas+, std}} - Q_{\text{bg+, std}} \] \hspace{1cm} (4)

\[Q_{\text{leak-}} = Q_{\text{meas-, std}} - Q_{\text{bg-, std}} \] \hspace{1cm} (5)

6.2.3.5 The sum of the positive and negative pressure zone tests shall be reported as the air leakage of the equipment:

\[Q_{\text{leak}} = Q_{\text{leak+}, \text{ std}} + Q_{\text{leak-}, \text{ std}} \] \hspace{1cm} (6)

7. DATA TO BE RECORDED

The test report shall contain the following information:

a. Date of test
b. Name of test organization
c. Description of equipment under test, including the manufacturer, make, model number, serial number, and the type of device (e.g., furnace, VAV box)
d. Whether manufacturer-supplied grommets were used to seal penetrations
e. Method used to seal condensate drains
f. Air leakage test result, Q leak (see Section 6.2.3.5.)

(This annex is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objections on informative material are not offered the right to appeal at ASHRAE or ANSI.)

INFORMATIVE ANNEX A

BIBLIOGRAPHY

ANSI/ASHRAE Standard 130-2008, Methods of Testing Air Terminal Units.

POLICY STATEMENT DEFINING ASHRAE’S CONCERN
FOR THE ENVIRONMENTAL IMPACT OF ITS ACTIVITIES

ASHRAE is concerned with the impact of its members’ activities on both the indoor and outdoor environment. ASHRAE’s members will strive to minimize any possible deleterious effect on the indoor and outdoor environment of the systems and components in their responsibility while maximizing the beneficial effects these systems provide, consistent with accepted standards and the practical state of the art.

ASHRAE’s short-range goal is to ensure that the systems and components within its scope do not impact the indoor and outdoor environment to a greater extent than specified by the standards and guidelines as established by itself and other responsible bodies.

As an ongoing goal, ASHRAE will, through its Standards Committee and extensive technical committee structure, continue to generate up-to-date standards and guidelines where appropriate and adopt, recommend, and promote those new and revised standards developed by other responsible organizations.

Through its Handbook, appropriate chapters will contain up-to-date standards and design considerations as the material is systematically revised.

ASHRAE will take the lead with respect to dissemination of environmental information of its primary interest and will seek out and disseminate information from other responsible organizations that is pertinent, as guides to updating standards and guidelines.

The effects of the design and selection of equipment and systems will be considered within the scope of the system’s intended use and expected misuse. The disposal of hazardous materials, if any, will also be considered.

ASHRAE’s primary concern for environmental impact will be at the site where equipment within ASHRAE’s scope operates. However, energy source selection and the possible environmental impact due to the energy source and energy transportation will be considered where possible. Recommendations concerning energy source selection should be made by its members.
About ASHRAE

ASHRAE, founded in 1894, is an international building technology society with more than 50,000 members worldwide. The Society and its members focus on building systems, energy efficiency, indoor air quality, refrigeration, and sustainability. Through research, standards writing, publishing, certification and continuing education, ASHRAE shapes tomorrow’s built environment today.

For more information or to become a member of ASHRAE, visit www.ashrae.org.

To stay current with this and other ASHRAE standards and guidelines, visit www.ashrae.org/standards.

Visit the ASHRAE Bookstore

ASHRAE offers its standards and guidelines in print, as immediately downloadable PDFs, on CD-ROM, and via ASHRAE Digital Collections, which provides online access with automatic updates as well as historical versions of publications. Selected standards are also offered in redline versions that indicate the changes made between the active standard and its previous version. For more information, visit the Standards and Guidelines section of the ASHRAE Bookstore at www.ashrae.org/bookstore.

IMPORTANT NOTICES ABOUT THIS STANDARD

To ensure that you have all of the approved addenda, errata, and interpretations for this standard, visit www.ashrae.org/standards to download them free of charge.

Addenda, errata, and interpretations for ASHRAE standards and guidelines are no longer distributed with copies of the standards and guidelines. ASHRAE provides these addenda, errata, and interpretations only in electronic form to promote more sustainable use of resources.