BSR/ASHRAE Addendum h
to ANSI/ASHRAE Standard 15-2022

First Public Review Draft

Proposed Addendum h to
Standard 15-2022, Safety Standard
for Refrigeration Systems

First Public Review (August 2023)
(Draft shows Proposed Changes to Current Standard)

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at https://www.ashrae.org/technical-resources/standards-and-guidelines/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

This standard is under continuous maintenance. To propose a change to the current standard, use the change submittal form available on the ASHRAE website, www.ashrae.org.

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHRAE of any product, service, process, procedure, or design, and ASHRAE expressly disclaims such.

© 2023 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 180 Technology Parkway NW, Peachtree Corners, GA 30092. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 180 Technology Parkway NW, Peachtree Corners, GA 30092
FOREWORD

This proposed addendum corrects values of conversion factors in Table 7-3 for use in the calculation of effective dispersal volume charge (EDVC) and adds equations to calculate conversion factors for other refrigerants not included in Table 7-3.

Note: This addendum makes proposed changes to the current standard. These changes are indicated in the text by underlining (for additions) and strikethrough (for deletions) except where the reviewer instructions specifically describe some other means of showing the changes. Only these changes to the current standard are open for review and comment at this time. Additional material is provided for context only and is not open for comment except as it relates to the proposed changes.

Addendum h to Standard 15-2022

Modify Section 7 as follows. The remainder of Section 7 remains unchanged.

7. DEFINITIONS

[...]

7.6.1.2* Other Refrigeration Systems. For any refrigeration system not meeting the requirements of Section 7.6.1.1, the refrigerant charge of the largest independent circuit of the system \((m_s)\) shall not exceed the value from Equation 7-9a:

\[
EDVC = M_{def} \times F_{LFL} \times F_{occ}
\]

(7-9a)

where:

- \(EDVC\) = effective dispersal volume charge, \(\text{ft}^3 (\text{m}^3)\)
- \(M_{def}\) = refrigerant charge from Table 7-1 (lb) or Table 7-2 (kg)
- \(F_{LFL}\) = LFL conversion factor from Table 7-3, or for refrigerant designations not in Table 7-3, use Equation 7-9b
- \(F_{occ}\) = occupancy adjustment factor; (For all occupancies other than institutional occupancies, \(F_{occ}\) has a value of 1. For institutional occupancies, \(F_{occ}\) has a value of 0.5.)

\[
F_{LFL} = \left(\frac{LFL}{LFL_{R-32}} \right)^{1.25}
\]

(7-9b)

where:

- \(LFL\) = lower flammability limit, \(\text{lb}/1000 \text{ ft}^3 (\text{g/m}^3)\)
- \(LFL_{R-32}\) = lower flammability limit of R-32, \(\text{lb}/1000 \text{ ft}^3 (\text{g/m}^3)\)

[...]
Table 7-3 \textit{LFL} Conversion Factor

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>(F_{LFL})</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-32</td>
<td>1.00</td>
</tr>
<tr>
<td>R-452B</td>
<td>1.02</td>
</tr>
<tr>
<td>R-454A</td>
<td>0.900, 0.92</td>
</tr>
<tr>
<td>R-454B</td>
<td>0.960, 0.97</td>
</tr>
<tr>
<td>R-454C</td>
<td>0.940, 0.95</td>
</tr>
<tr>
<td>R-457A</td>
<td>0.650, 0.71</td>
</tr>
</tbody>
</table>

[...]