BSR/ASHRAE Addendum f to ANSI/ASHRAE Standard 161-2018

___________________Public Review Draft

Proposed Addendum f to Standard 161-2018, Air Quality within Commercial Aircraft

First Public Review (June 2022)
(Draft shows Proposed Changes to Current Standard)

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research-technology/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

This standard is under continuous maintenance. To propose a change to the current standard, use the change submittal form available on the ASHRAE website, www.ashrae.org.

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHRAE of any product, service, process, procedure, or design, and ASHRAE expressly disclaims such.

© 2022 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 180 Technology Parkway NW, Peachtree Corners, GA 30092. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 180 Technology Parkway NW, Peachtree Corners, GA 30092
FOREWORD

The primary purpose of this proposed addendum is to remove the carbon monoxide-specific language intended to address the continuous monitoring requirement for engine oil or hydraulic fluid contamination of the bleed air. As a result, the sensor requirement language in Sections 7.2, 8.2, and 9 now focuses more broadly on suitable marker compounds intended to reliably indicate the presence of engine oil or hydraulic fluid contamination of the bleed air. This proposed addendum also adds a definition for “engine” to Section 3.

Note: In this addendum, changes to the current standard are indicated in the text by underlining (for additions) and strikethrough (for deletions) unless the instructions specifically mention some other means of indicating the changes.

Addendum f to Standard 161-2018

Revise Section 3 (Definitions) as shown below. The remainder of Section 3 is unchanged.

engine: either a propulsion engine or an auxiliary power unit engine.

Revise Section 7.2 (Bleed Air Contaminant Monitoring) as shown below.

7.2 Bleed Air Contaminant Monitoring. Monitoring in the air supply system for specific sources of bleed air contaminants is intended to facilitate pilot and maintenance actions where necessary and to provide an indication of contaminants in the air supply system that are supplied to the cabin and/or cockpit.

Validation shall require investigating the effectiveness and feasibility of any sensor to ensure that it can be installed, while accounting for cost, reliability, accuracy, maintainability, and viability. Operational procedures shall be developed for both airline maintenance and air crew response to measured levels.

One or more sensors intended to identify either particles or a chemical substance or substances indicative of air supply system contamination by partly or fully pyrolyzed engine oil and/or hydraulic fluid shall be installed. The indicator substance or substances shall:

a. be shown to be associated with the presence of partly or fully pyrolyzed engine oil in any phase (i.e., gas, liquid, solid) and/or hydraulic fluid in any phase;
b. have a sufficiently low background level that its presence can be reliably attributed to these contaminants; and
c. be measured with sufficient sensitivity to reliably detect the occurrence of these contamination events.

The sensor or sensors shall sample the airstream no less frequently than once every 60 seconds.

Supply air shall be sampled by at least one sensor before it enters the cabin or cockpit. A separate sensor is recommended for each air supply source, such as each engine and the APU, so that it is possible to identify and isolate the source of contamination in the event it is detected. Monitoring before the mix manifold is likely to provide better information to help identify the source of the contamination; however, this area may be more difficult to monitor.
Indication from the sensors shall be displayed in the flight deck and recorded anytime the concentration is at or above the trigger point. The trigger point is defined as a concentration that may not be high enough to be associated with a negative health impact on its own but rather indicates the presence of partly or fully pyrolyzed engine oils or hydraulic fluids.

The trigger point shall be high enough above background levels to indicate contamination but not so high above background levels to miss events. An exceedance shall be defined as the trigger point concentration being maintained for a predetermined and appropriate sampling period (dependent on the contaminant) while in flight or on the ground. Any exceedance shall be recorded in the aircraft technical log and maintenance records, and appropriate action shall be taken immediately in accordance with the relevant regulations and effective and approved maintenance procedures to identify and address the potential source of contamination.

The record of the duration and levels of each exceedance shall be made available as follows for at least the 60 days following a flight on which an exceedance occurs:

a. To airline maintenance staff to aid in identifying appropriate corrective actions
b. To any occupants present on the given flight, including crew members or their representatives, with a medical record indicating symptoms that could reasonably be attributed to exposure to one or more relevant contaminants, in order to assist their physicians in diagnosis and treatment

The response to an exceedance will vary depending on the number, magnitude, and frequency of triggered events. For example, an unexplained single exceedance without reports of relevant symptoms from crew or passengers may require only a general check of main engine components for problems such as engine oil overfill, visible leaks, and hydraulic leaks. Higher-value exceedances or multiple triggered events (either during a single sector or on separate sectors), especially if they include reports of symptoms consistent with exposure to partly combusted engine oil or hydraulic fluid, will require a higher degree of maintenance investigation and action, such as swab testing of the bleed ducts to check for engine oil leaks.

If in-service testing demonstrates that carbon monoxide (CO) will be an effective chemical marker for oil or hydraulic fluid contamination of the bleed air supply system, and it is selected as the indicator substance, the trigger point for data recording and display shall be set at 9 ppm, and an exceedance shall be defined as either (a) a ten-minute time-weighted average concentration at or above 9 ppm or (b) a 60 second peak value at or above 50 ppm.

Revise Section 8.2 (General) as shown below.

8.2 General

Control Measures

| Design | a. The APU and engine inlets can potentially be entry points for hydraulic fluid, fuel, oil, and deicing fluid. Means to limit the ingestion of these fluids should be evaluated during the design phase (prevention through design). One example is the use of dedicated compressors for outside air supply, rather than the more traditional bleed air systems, which may minimize the potential entry of engine/APU contaminants into the cabin air. Other design considerations that have been implemented include changing the location of the APU inlet and/or installing a physical barrier either around or in front of the inlet to physically divert contaminants from entering the inlet (Informative Note: e.g., raising the APU inlet off the surface of the aircraft or installing a diverter ahead of the APU inlet). Airlines and manufacturers should consider the necessity and feasibility of applying these measures to the fleet.
| b. Air-cleaning technologies to reduce contamination in bleed air sources before it is introduced to the cabin and cockpit may be considered. |
Monitoring

a. An appropriate marker for bleed air contamination, carbon monoxide or an alternate contaminant, as appropriate, shall be monitored in accordance with Section 7.2 of this standard.
b. Ozone should be continuously monitored on flights where ozone is expected to be encountered. See FAA Advisory Circular 120-38 for more information.
c. Measurements that exceed the limits described in this standard shall be recorded.
d. Sampling and monitoring devices that are reliable and easy to operate would be useful in the cabin and flight deck as an additional source of information to validate and/or quantify certain types of contamination events.
e. An international database of factual information from flights where suspicion of contaminated air exists should be established; see SHK RL 2001:41eR3 for guidance.

Remedies

a. Responsible employees shall be given training, supplies, and time to clean contaminated surfaces in order to mitigate potential health hazards associated with crew or passenger contact; see Circular 344-AN/202 for guidance.
b. If a buildup of residue is noted in the APU/engines, air-conditioning packs, and ducts, the affected components shall either be removed and cleaned or replaced to prevent additional contamination. If the pack burn air is not dumped overboard, passengers and crew shall not be on board during a pack burn. Maintenance workers shall be educated on the need to avoid exposure to contaminants in the bleed air system during pack burn and associated system inspection and cleaning procedures. When it is not possible to effectively clean airborne contaminants that deposit on high surface-area components, such as acoustical duct lining, water separator coalescer bags, ozone converters, and heat exchangers, those components shall be removed and either cleaned or replaced. (Informative Note: See also Section A3, “ECS Cleaning Procedures.”)
c. To address air supply contamination, the pilot shall first identify the location of the source and isolate it (pack management) and then document it according to airline procedures.

d. If symptoms that could reasonably be attributed to exposure to one or more contaminants associated with an episodic event, such as smoke/fumes in the cabin/flight deck or other evidence of internal air supply contamination or ozone exposure, are reported to the pilot and involve one or more passenger or crew member as evidenced by an aircraft maintenance log entry, the aircraft shall be turned over to maintenance prior to next dispatch to identify and address the source of air supply contamination according to airline maintenance manual procedures.
e. Ground-based air supply systems/equipment (including high and low pressure) shall be inspected and serviced at least every three months in order to prevent the contamination of aircraft systems and to ensure the integrity of the equipment.

Revise Section 9 (Measurements) as shown below.

9. MEASUREMENTS

The section specifies measurements that shall be made when determining whether specific requirements of this standard are met. Continuous measurement of environmental variables is not mandated by this standard, with the exception of bleed air contamination markers in accordance with Section 7.2 of this standard, carbon monoxide.