BSR/ASHRAE Addendum b to ANSI/ASHRAE Standard 90.4-2019

Public Review Draft

Proposed Addendum b to

Standard 90.4-2019, Energy Standard for Data Centers

First Public Review (March 2020)
(Draft Shows Proposed Changes to Current Standard)

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research--technology/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

This standard is under continuous maintenance. To propose a change to the current standard, use the change submittal form available on the ASHRAE website, www.ashrae.org.

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHRAE of any product, service, process, procedure, or design, and ASHRAE expressly disclaims such.

© 2020 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 1791 Tullie Circle, NE, Atlanta GA 30329-2305
Foreword

This addendum clarifies exactly how credit can be taken for renewables. The renewables credit is limited to 5% of the IT load in order to encourage renewable energy while still requiring energy efficient mechanical and electrical systems.

[Note to Reviewers: This addendum makes proposed changes to the current standard. These changes are indicated in the text by underlining (for additions) and strikethrough (for deletions) except where the reviewer instructions specifically describe some other means of showing the changes. Only these changes to the current standard are open for review and comment at this time. Additional material is provided for context only and is not open for comment except as it relates to the proposed changes.]

Addendum b to 90.4-2019

Revise Section 11 as follows:

11. ALTERNATIVE COMPLIANCE METHOD

…

11.2 Compliance. Compliance with Section 11 shall be demonstrated by complying with all of the following conditions: …

d. The sum of the calculated values of the annualized MLC value and the design ELC minus the OR-Credit shall be equal to or less than the maximum overall systems design value. (The sum of the annualized MLC value and the design ELC value create an overall systems design value.)

OR-Credit = lesser of 0.05 or \[\frac{\sum_{N=25,50,75,100} \text{OnsiteRenewables}_N}{\sum_{N=25,50,75,100} \text{DataCenterITE}_N} \]

OnsiteRenewables\(_N\) (kWh) = total annual energy that is produced onsite by renewable energy systems and that is consumed onsite, at a constant IT load of \(N\)% of the design IT load. Onsite renewables can only be included in the Annualized MLC calculation if the data center owner owns the onsite renewable energy system or has signed a contractual agreement to purchase energy generated by the onsite renewable energy system for at least 10 years. Onsite renewable credit shall be limited to incremental addition of renewable capacity concurrent with data center approval/construction. It shall not be permissible to assign existing renewable capacity to this credit.

DataCenterITE\(_N\) (kWh) = total annual energy consumed by the IT at a constant IT load of \(N\)% of the design IT load. For example, DataCenterITE\(_{50}\) for a design IT load of 1,000 kW = 1,000 kW * 8760 hrs * 0.5 = 4,380,000 kWh. IT. energy does not include UPS energy, but does include server fan energy.